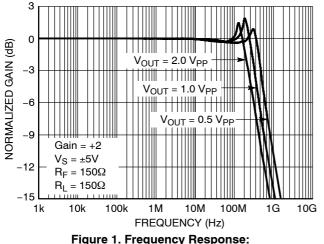
# 750 MHz Voltage Feedback Op Amp

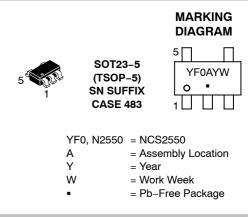

NCS2550 is a 750 MHz voltage feedback monolithic operational amplifier featuring high slew rate and low differential gain and phase error. The voltage feedback architecture allows for a superior bandwidth and low power consumption.

### Features

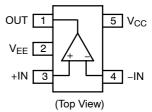
- $-3.0 \text{ dB Small Signal BW} (A_V = +2.0, V_O = 0.5 V_{p-p}) 750 \text{ MHz Typ}$
- Slew Rate 1700 V/µs
- Supply Current 13 mA
- Input Referred Voltage Noise 5.0  $nV/\sqrt{Hz}$
- THD -64 dBc (f = 5.0 MHz,  $V_0 = 2.0 V_{p-p}$ )
- Output Current 100 mA
- Pin Compatible with EL5157, AD8057
- This is a Pb–Free Device

### Applications

- Line Drivers
- Radar/Communication Receivers




Gain (dB) vs. Frequency Av = +2.0




# **ON Semiconductor®**

http://onsemi.com



#### SOT23-5 (TSOP-5) PINOUT



### **ORDERING INFORMATION**

| Device       | Package                          | Shipping <sup>†</sup> |
|--------------|----------------------------------|-----------------------|
| NCS2550SNT1G | SOT23–5<br>(TSOP–5)<br>(Pb–Free) | 3000/Tape & Reel      |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

### PIN FUNCTION DESCRIPTION

| Pin<br>(SOT23/SC70) | Symbol          | Function              | Equivalent Circuit |
|---------------------|-----------------|-----------------------|--------------------|
| 1                   | OUT             | Output                |                    |
| 2                   | V <sub>EE</sub> | Negative Power Supply |                    |
| 3                   | +IN             | Non-inverted Input    |                    |
| 4                   | –IN             | Inverted Input        | See Above          |
| 5                   | V <sub>CC</sub> | Positive Power Supply |                    |

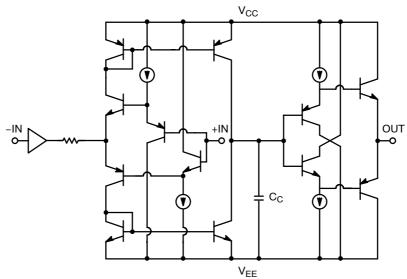



Figure 2. Simplified Device Schematic

### ATTRIBUTES

| Characteristics                                                  | Value                     |
|------------------------------------------------------------------|---------------------------|
| ESD<br>Human Body Model<br>Machine Model<br>Charged Device Model | 2.0 kV<br>200 V<br>1.0 kV |
| Moisture Sensitivity (Note 1)                                    | Level 1                   |
| Flammability Rating Oxygen Index: 28 to 34                       | UL 94 V-0 @ 0.125 in      |

1. For additional information, see Application Note AND8003/D.

#### MAXIMUM RATINGS

| Parameter                             | Symbol           | Rating          | Unit |
|---------------------------------------|------------------|-----------------|------|
| Power Supply Voltage                  | V <sub>S</sub>   | 11              | Vdc  |
| Input Voltage Range                   | VI               | ≤V <sub>S</sub> | Vdc  |
| Input Differential Voltage Range      | V <sub>ID</sub>  | ≤V <sub>S</sub> | Vdc  |
| Output Current                        | Ι <sub>Ο</sub>   | 100             | mA   |
| Maximum Junction Temperature (Note 2) | TJ               | 150             | °C   |
| Operating Ambient Temperature         | T <sub>A</sub>   | -40 to +85      | °C   |
| Storage Temperature Range             | T <sub>stg</sub> | -60 to +150     | °C   |
| Power Dissipation                     | PD               | (See Graph)     | mW   |
| Thermal Resistance, Junction-to-Air   | $R_{	hetaJA}$    | 158             | °C/W |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

2. Power dissipation must be considered to ensure maximum junction temperature (T<sub>1</sub>) is not exceeded.

#### MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated is limited by the associated rise in junction temperature. For the plastic packages, the maximum safe junction temperature is 150°C. If the maximum is exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the "overheated" condition for an extended period can result in device damage.

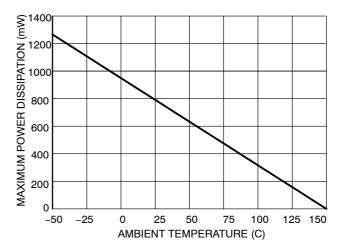



Figure 3. Power Dissipation vs. Temperature

| AC ELECTRICAL CHARACTERISTICS (V <sub>CC</sub> = +5.0 V, V <sub>EE</sub> = -5.0 V, T <sub>A</sub> = -40°C to +85°C, R <sub>L</sub> = 150 $\Omega$ to GND, R <sub>F</sub> = 150 $\Omega$ , |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $A_V = +2.0$ , Enable is left open, unless otherwise specified).                                                                                                                          |  |

| Characteristic                                          | Conditions                                                                                                                                                                                                           | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y DOMAIN PERFORMANCE                                    |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bandwidth<br>3.0 dB Small Signal<br>3.0 dB Large Signal | $A_V = +2.0, V_O = 0.5 V_{p-p}$<br>$A_V = +2.0, V_O = 2.0 V_{p-p}$                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 750<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.1 dB Gain Flatness<br>Bandwidth                       | A <sub>V</sub> = +2.0                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Differential Gain                                       | $A_V$ = +2.0, $R_L$ = 150 $\Omega$ , f = 3.58 MHz                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Differential Phase                                      | $A_V$ = +2.0, $R_L$ = 150 $\Omega$ , f = 3.58 MHz                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AIN RESPONSE                                            | -                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Slew Rate                                               | A <sub>V</sub> = +2.0, V <sub>step</sub> = 2.0 V                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V/μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Settling Time<br>0.1%                                   | A <sub>V</sub> = +2.0, V <sub>step</sub> = 2.0 V                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rise and Fall Time                                      | (10%–90%) A <sub>V</sub> = +2.0, V <sub>step</sub> = 2.0 V                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                         | Y DOMAIN PERFORMANCE<br>Bandwidth<br>3.0 dB Small Signal<br>3.0 dB Large Signal<br>0.1 dB Gain Flatness<br>Bandwidth<br>Differential Gain<br>Differential Phase<br>IN RESPONSE<br>Slew Rate<br>Settling Time<br>0.1% | Y DOMAIN PERFORMANCEBandwidth<br>3.0 dB Small Signal<br>3.0 dB Large Signal $A_V = +2.0, V_O = 0.5 V_{p-p}$<br>$A_V = +2.0, V_O = 2.0 V_{p-p}$ 0.1 dB Gain Flatness<br>Bandwidth $A_V = +2.0, V_O = 2.0 V_{p-p}$ Differential Gain $A_V = +2.0, R_L = 150 \Omega, f = 3.58 MHz$ Differential Phase $A_V = +2.0, R_L = 150 \Omega, f = 3.58 MHz$ IN RESPONSESlew RateSlew Rate $A_V = +2.0, V_{step} = 2.0 V$ Settling Time<br>$0.1\%$ $A_V = +2.0, V_{step} = 2.0 V$ | Y DOMAIN PERFORMANCEBandwidth<br>3.0 dB Small Signal<br>3.0 dB Large Signal $A_V = +2.0, V_O = 0.5 V_{p-p}$<br>$A_V = +2.0, V_O = 2.0 V_{p-p}$ 0.1 dB Gain Flatness<br>Bandwidth $A_V = +2.0, V_O = 2.0 V_{p-p}$ Differential Gain $A_V = +2.0, R_L = 150 \Omega, f = 3.58 MHz$ Differential Phase $A_V = +2.0, R_L = 150 \Omega, f = 3.58 MHz$ IN RESPONSESlew RateSlew Rate $A_V = +2.0, V_{step} = 2.0 V$ Settling Time<br>$0.1\%$ $A_V = +2.0, V_{step} = 2.0 V$ | Bandwidth<br>3.0 dB Small Signal<br>3.0 dB Large Signal $A_V = +2.0, V_O = 0.5 V_{p-p}$<br>$A_V = +2.0, V_O = 2.0 V_{p-p}$ 750<br>350         0.1 dB Gain Flatness<br>Bandwidth $A_V = +2.0, V_O = 2.0 V_{p-p}$ 40         Differential Gain $A_V = +2.0, R_L = 150 \Omega, f = 3.58 MHz$ 0.07         Differential Phase $A_V = +2.0, R_L = 150 \Omega, f = 3.58 MHz$ 0.01         IN RESPONSE       Slew Rate $A_V = +2.0, V_{step} = 2.0 V$ 1700         Settling Time<br>$0.1\%$ $A_V = +2.0, V_{step} = 2.0 V$ 10 | Bandwidth<br>3.0 dB Small Signal<br>3.0 dB Small Signal<br>3.0 dB Large Signal $A_V = +2.0, V_O = 0.5 V_{p-p}$<br>$A_V = +2.0, V_O = 2.0 V_{p-p}$ 750<br>350         0.1 dB Gain Flatness<br>Bandwidth $A_V = +2.0, V_O = 2.0 V_{p-p}$ 40         Differential Gain $A_V = +2.0, R_L = 150 \Omega, f = 3.58 MHz$ 0.07         Differential Phase $A_V = +2.0, R_L = 150 \Omega, f = 3.58 MHz$ 0.01         IN RESPONSE       Slew Rate $A_V = +2.0, V_{step} = 2.0 V$ 1700         Settling Time<br>$0.1\%$ $A_V = +2.0, V_{step} = 2.0 V$ 10 |

| THD            | Total Harmonic Distortion      | $f = 5.0 \text{ MHz}, V_0 = 2.0 V_{p-p}$ | -64 | dB             |
|----------------|--------------------------------|------------------------------------------|-----|----------------|
| HD2            | 2nd Harmonic Distortion        | $f = 5.0 \text{ MHz}, V_0 = 2.0 V_{p-p}$ | -65 | dBc            |
| HD3            | 3rd Harmonic Distortion        | $f = 5.0 \text{ MHz}, V_0 = 2.0 V_{p-p}$ | -75 | dBc            |
| IP3            | Third-Order Intercept          | $f = 10 \text{ MHz}, V_O = 1.0 V_{p-p}$  | 40  | dBm            |
| SFDR           | Spurious-Free Dynamic<br>Range | f = 5.0 MHz, $V_0$ = 2.0 $V_{p-p}$       | 65  | dBc            |
| e <sub>N</sub> | Input Referred Voltage Noise   | f = 1.0 MHz                              | 5.0 | $nV/\sqrt{Hz}$ |
| i <sub>N</sub> | Input Referred Current Noise   | f = 1.0 MHz                              | 4.0 | $pA/\sqrt{Hz}$ |

| <b>DC ELECTRICAL CHARACTERISTICS</b> ( $V_{CC}$ = +5.0 V, $V_{EE}$ = -5.0 V, $T_A$ = -40°C to +85°C, $R_L$ = 150 $\Omega$ to GND, $R_F$ = 150 $\Omega$ , |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A_V = +2.0$ , Enable is left open, unless otherwise specified).                                                                                         |

| Symbol                     | Characteristic                                  | Conditions               | Min  | Тур       | Max | Unit  |
|----------------------------|-------------------------------------------------|--------------------------|------|-----------|-----|-------|
| DC PERFO                   | RMANCE                                          |                          |      |           |     |       |
| V <sub>IO</sub>            | Input Offset Voltage                            |                          | -10  | 0         | +10 | mV    |
| $\Delta V_{IO} / \Delta T$ | Input Offset Voltage<br>Temperature Coefficient |                          |      | 6.0       |     | μV/°C |
| I <sub>IB</sub>            | Input Bias Current                              | V <sub>O</sub> = 0 V     |      | ±3.2      | ±20 | μA    |
| $\Delta I_{IB} / \Delta T$ | Input Bias Current<br>Temperature Coefficient   | V <sub>O</sub> = 0 V     |      | ±40       |     | nA/°C |
| INPUT CHA                  | RACTERISTICS                                    |                          |      |           |     |       |
| V <sub>CM</sub>            | Input Common Mode Voltage<br>Range (Note 3)     |                          | ±3.0 | ±3.2      |     | V     |
| CMRR                       | Common Mode Rejection<br>Ratio                  | (See Graph)              | 40   | 50        |     | dB    |
| R <sub>IN</sub>            | Input Resistance                                |                          |      | 4.5       |     | MΩ    |
| C <sub>IN</sub>            | Differential Input<br>Capacitance               |                          |      | 1.0       |     | pF    |
| OUTPUT CI                  | HARACTERISTICS                                  |                          |      |           |     |       |
| R <sub>OUT</sub>           | Output Resistance                               | Closed Loop<br>Open Loop |      | 0.1<br>11 |     | Ω     |
| Vo                         | Output Voltage Range                            |                          | ±3.0 | ±4.0      |     | V     |
| Ι <sub>Ο</sub>             | Output Current                                  |                          | ± 50 | ±100      |     | mA    |
| POWER SU                   | IPPLY                                           |                          |      |           |     |       |
| VS                         | Operating Voltage Supply                        |                          |      | 10        |     | V     |
| ۱ <sub>S</sub>             | Power Supply Current                            |                          | 5.0  | 13        | 17  | mA    |
| PSRR                       | Power Supply Rejection<br>Ratio                 | (See Graph)              | 40   | 56        |     | dB    |

3. Guaranteed by design and/or characterization.

| AC ELECTRICAL CHARACTERISTICS (V <sub>CC</sub> = +2.5 V, V <sub>EE</sub> = -2.5 V, T <sub>A</sub> = -40°C to +85°C, R <sub>L</sub> = 150 $\Omega$ to GND, R <sub>F</sub> = 150 $\Omega$ , |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A_V = +2.0$ , Enable is left open, unless otherwise specified).                                                                                                                          |

| Symbol                        | Characteristic                                          | Conditions                                                                 | Min | Тур        | Max | Unit |
|-------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|-----|------------|-----|------|
| FREQUENC                      | Y DOMAIN PERFORMANCE                                    |                                                                            |     |            |     |      |
| BW                            | Bandwidth<br>3.0 dB Small Signal<br>3.0 dB Large Signal | $A_V$ = +2.0, $V_O$ = 0.5 $V_{p-p}$<br>$A_V$ = +2.0, $V_O$ = 1.0 $V_{p-p}$ |     | 550<br>200 |     | MHz  |
| GF <sub>0.1dB</sub>           | 0.1 dB Gain Flatness<br>Bandwidth                       | A <sub>V</sub> = +2.0                                                      |     | 35         |     | MHz  |
| dG                            | Differential Gain                                       | $A_V$ = +2.0, $R_L$ = 150 $\Omega$ , f = 3.58 MHz                          |     | 0.07       |     | %    |
| dP                            | Differential Phase                                      | $A_V$ = +2.0, $R_L$ = 150 $\Omega$ , f = 3.58 MHz                          |     | 0.02       |     | 0    |
| TIME DOMA                     | AIN RESPONSE                                            |                                                                            |     |            |     |      |
| SR                            | Slew Rate                                               | A <sub>V</sub> = +2.0, V <sub>step</sub> = 1.0 V                           |     | 900        |     | V/µs |
| t <sub>s</sub>                | Settling Time<br>0.1%                                   | A <sub>V</sub> = +2.0, V <sub>step</sub> = 1.0 V                           |     | 10         |     | ns   |
| t <sub>r</sub> t <sub>f</sub> | Rise and Fall Time                                      | (10%–90%) $A_V$ = +2.0, $V_{step}$ = 1.0 V                                 |     | 1.7        |     | ns   |
| HARMONIC                      | NOISE PERFORMANCE                                       |                                                                            |     |            |     |      |
| THD                           | Total Harmonic Distortion                               | $f = 5.0 \text{ MHz}, \text{ V}_{O} = 1.0 \text{ V}_{p-p}$                 |     | -60        |     | dB   |
| HD2                           | 2nd Harmonic Distortion                                 | $f = 5.0 \text{ MHz}, \text{ V}_{O} = 1.0 \text{ V}_{p-p}$                 |     | -65        |     | dBc  |
| HD3                           | 3rd Harmonic Distortion                                 | $f = 5.0 \text{ MHz}, \text{ V}_{O} = 1.0 \text{ V}_{p-p}$                 |     | -63        |     | dBc  |

f = 10 MHz,  $V_O$  = 0.5  $V_{p-p}$ 

f = 5.0 MHz,  $V_O$  = 1.0  $V_{p-p}$ 

f = 1.0 MHz

f = 1.0 MHz

35

63

5.0

4.0

dBm

dBc

 $nV/\sqrt{Hz}$  $pA/\sqrt{Hz}$ 

IP3

SFDR

 $e_{\mathsf{N}}$ 

iΝ

Third-Order Intercept

Range

Spurious-Free Dynamic

Input Referred Voltage Noise

Input Referred Current Noise

| <b>DC ELECTRICAL CHARACTERISTICS</b> (V <sub>CC</sub> = +2.5 V, V <sub>EE</sub> = -2.5 V, T <sub>A</sub> = -40°C to +85°C, R <sub>L</sub> = 150 $\Omega$ to GND, R <sub>F</sub> = 150 $\Omega$ , |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A_V = +2.0$ , Enable is left open, unless otherwise specified).                                                                                                                                 |

| Symbol                     | Characteristic                                  | Conditions               | Min  | Тур       | Max | Unit  |
|----------------------------|-------------------------------------------------|--------------------------|------|-----------|-----|-------|
| DC PERFO                   | RMANCE                                          |                          | -    |           |     |       |
| V <sub>IO</sub>            | Input Offset Voltage                            |                          | -10  | 0         | +10 | mV    |
| $\Delta V_{IO} / \Delta T$ | Input Offset Voltage<br>Temperature Coefficient |                          |      | 6.0       |     | μV/°C |
| I <sub>IB</sub>            | Input Bias Current                              | V <sub>O</sub> = 0 V     |      | ±3.2      | ±20 | μΑ    |
| $\Delta I_{IB} / \Delta T$ | Input Bias Current<br>Temperature Coefficient   | V <sub>O</sub> = 0 V     |      | ±40       |     | nA/°C |
| INPUT CHA                  | RACTERISTICS                                    |                          | -    |           |     |       |
| V <sub>CM</sub>            | Input Common Mode Voltage<br>Range (Note 3)     |                          | ±1.1 | ±1.5      |     | V     |
| CMRR                       | Common Mode Rejection<br>Ratio                  | (See Graph)              | 40   | 50        |     | dB    |
| R <sub>IN</sub>            | Input Resistance                                |                          |      | 4.5       |     | MΩ    |
| C <sub>IN</sub>            | Differential Input<br>Capacitance               |                          |      | 1.0       |     | pF    |
| OUTPUT C                   | HARACTERISTICS                                  |                          | •    |           |     |       |
| R <sub>OUT</sub>           | Output Resistance                               | Closed Loop<br>Open Loop |      | 0.1<br>11 |     | Ω     |
| Vo                         | Output Voltage Range                            |                          | ±1.1 | ±1.5      |     | V     |
| Ιo                         | Output Current                                  |                          | ± 50 | ±100      |     | mA    |
| POWER SU                   | IPPLY                                           |                          | -    |           |     |       |
| VS                         | Operating Voltage Supply                        |                          |      | 5.0       |     | V     |
| Is                         | Power Supply Current                            |                          | 5.0  | 11        | 17  | mA    |
| PSRR                       | Power Supply Rejection<br>Ratio                 | (See Graph)              | 40   | 56        |     | dB    |

4. Guaranteed by design and/or characterization.

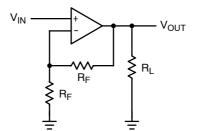
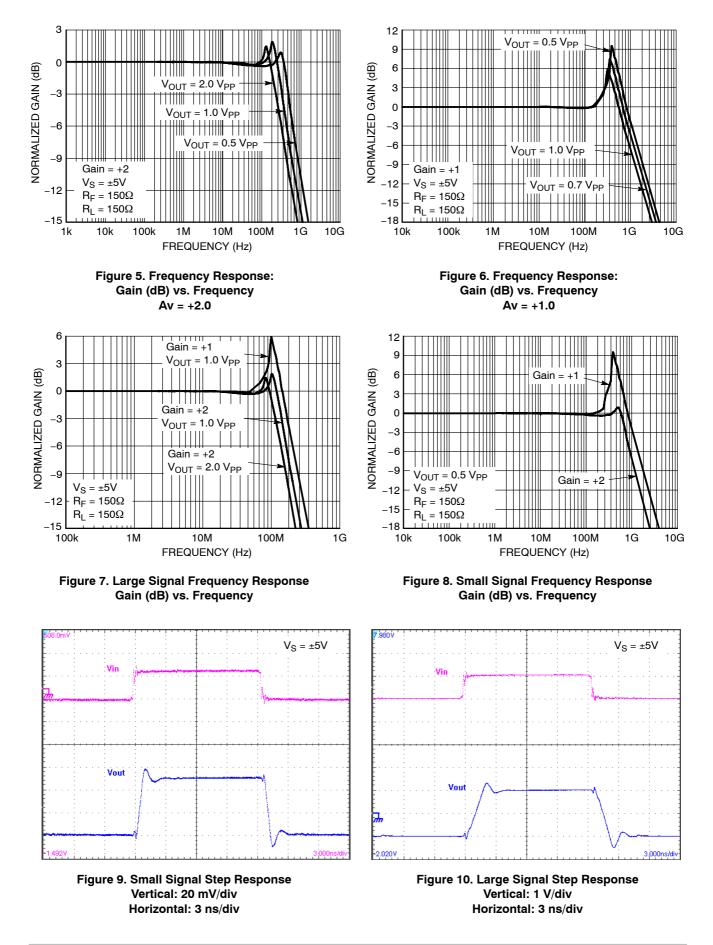




Figure 4. Typical Test Setup (A<sub>V</sub> = +2.0, R<sub>F</sub> = 150  $\Omega$ , R<sub>L</sub> = 150  $\Omega$ )



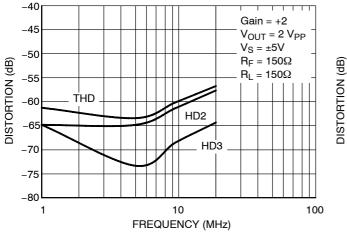



Figure 11. THD, HD2, HD3 vs. Frequency

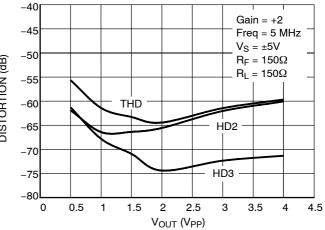



Figure 12. THD, HD2, HD3 vs. Output Voltage

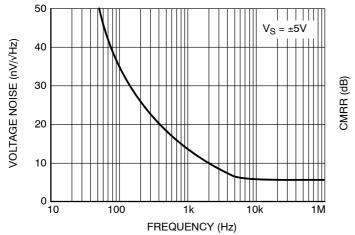



Figure 13. Input Referred Voltage Noise vs. Frequency

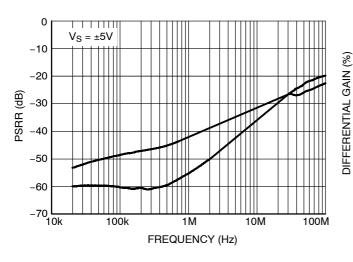



Figure 15. PSRR vs. Frequency

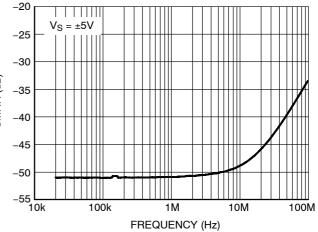
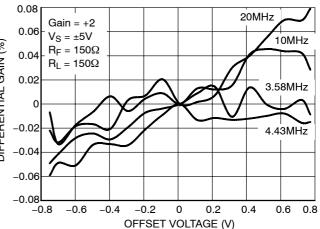




Figure 14. CMRR vs. Frequency





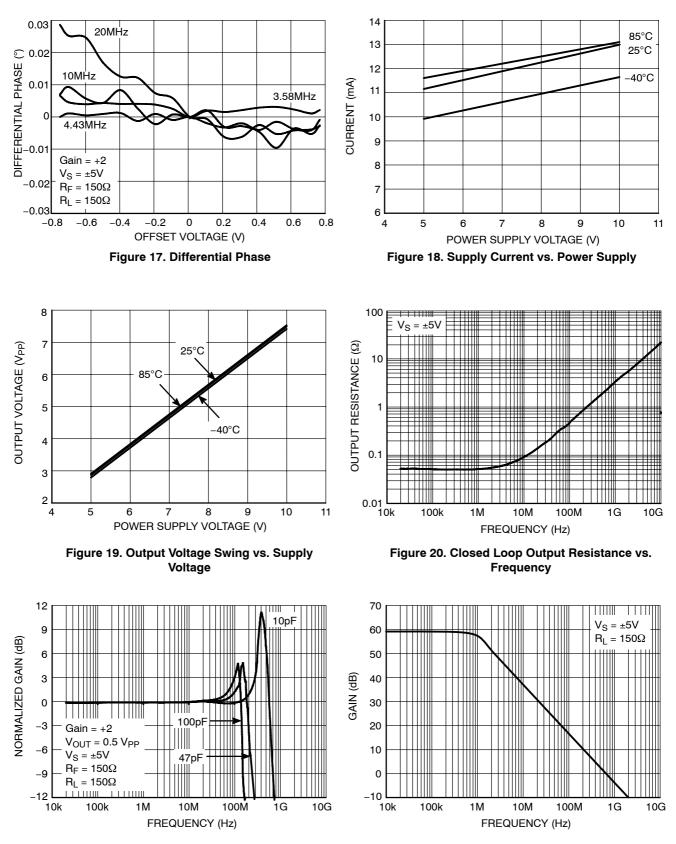



Figure 21. Frequency Response vs. Capacitive Load



### **Printed Circuit Board Layout Techniques**

Proper high speed PCB design rules should be used for all wideband amplifiers as the PCB parasitics can affect the overall performance. Most important are stray capacitances at the output and inverting input nodes as it can effect peaking and bandwidth. A space (3/16" is plenty) should be left around the signal lines to minimize coupling. Also, signal lines connecting the feedback and gain resistors should be short enough so that their associated inductance does not cause high frequency gain errors. Line lengths less than 1/4" are recommended.

#### Video Performance

This device designed to provide good performance with NTSC, PAL, and HDTV video signals. Best performance is obtained with back terminated loads as performance is degraded as the load is increased. The back termination reduces reflections from the transmission line and effectively masks transmission line and other parasitic capacitances from the amplifier output stage.

#### **ESD** Protection

All device pins have limited ESD protection using internal diodes to power supplies as specified in the attributes table

(see Figure 23). These diodes provide moderate protection to input overdrive voltages above the supplies. The ESD diodes can support high input currents with current limiting series resistors. Keep these resistor values as low as possible since high values degrade both noise performance and frequency response. Under closed-loop operation, the ESD diodes have no effect on circuit performance. However, under certain conditions the ESD diodes will be evident. If the device is driven into a slewing condition, the ESD diodes will clamp large differential voltages until the feedback loop restores closed-loop operation. Also, if the device is powered down and a large input signal is applied, the ESD diodes will conduct.

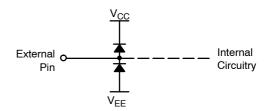



Figure 23. Internal ESD Protection

#### PACKAGE DIMENSIONS

TSOP-5 SN SUFFIX CASE 483-02 ISSUE E

D

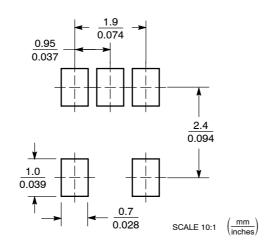
S

0.05 (0.002)

 $\oplus$ 

в

С


HI K

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
   CONTROLLING DIMENSION: MILLIMETER.
- CONTROLLING DIMENSION: MILLIMETER.
   MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- A AND B DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

|     | MILLIN | IETERS | INCHES |        |  |
|-----|--------|--------|--------|--------|--|
| DIM | MIN    | MAX    | MIN    | MAX    |  |
| Α   | 2.90   | 3.10   | 0.1142 | 0.1220 |  |
| В   | 1.30   | 1.70   | 0.0512 | 0.0669 |  |
| С   | 0.90   | 1.10   | 0.0354 | 0.0433 |  |
| D   | 0.25   | 0.50   | 0.0098 | 0.0197 |  |
| G   | 0.85   | 1.05   | 0.0335 | 0.0413 |  |
| н   | 0.013  | 0.100  | 0.0005 | 0.0040 |  |
| J   | 0.10   | 0.26   | 0.0040 | 0.0102 |  |
| ĸ   | 0.20   | 0.60   | 0.0079 | 0.0236 |  |
| L   | 1.25   | 1.55   | 0.0493 | 0.0610 |  |
| М   | 0 °    | 10 °   | 0°     | 10 °   |  |
| S   | 2.50   | 3.00   | 0.0985 | 0.1181 |  |

SOLDERING FOOTPRINT\*



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in incident the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable coyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative